🐍

Python AI Development

Build Production LLMs, RAG Systems & AI Agents with Autonomous Python Development

Build production-ready AI applications with syntax.ai's specialized Python AI agents. Our autonomous programming system masters LangChain orchestration, RAG architectures, and multi-agent systems to accelerate your AI development from prototype to deployment.

From GPT-4 integration to fine-tuned transformer models, our AI agents understand the entire modern AI stack—LLM APIs, vector databases, prompt engineering, and MLOps workflows—delivering production-ready code with comprehensive error handling and optimization.

Python Expertise Areas

🤖 LLM Integration

OpenAI, Anthropic Claude, Cohere API development with intelligent error handling

🔗 RAG Systems

Retrieval-augmented generation with vector databases and semantic search

🧠 AI Agents

LangChain, LlamaIndex, AutoGPT-style autonomous agent development

🎨 Model Fine-tuning

PEFT, LoRA, QLoRA for custom LLM adaptation and domain-specific models

⚡ GPU Optimization

CUDA acceleration, mixed precision training, distributed computing

📊 MLOps Pipeline

Weights & Biases, MLflow, model versioning, A/B testing

Framework & Library Mastery

LangChain & LangGraph

Build production LLM applications with chains, agents, and memory. LangGraph for complex multi-step workflows and state management.

Hugging Face Ecosystem

Transformers, Datasets, Accelerate for model deployment. Fine-tune BERT, GPT, T5, and deploy with optimized inference pipelines.

PyTorch & TensorFlow

Deep learning frameworks for custom model architectures. GPU optimization, distributed training, and production deployment.

LLM APIs

OpenAI GPT-4, Anthropic Claude, Cohere, Google Gemini integration. Streaming, function calling, and error handling patterns.

Vector Databases

Pinecone, Weaviate, ChromaDB, FAISS for semantic search. Embedding management, hybrid search, and RAG optimization.

MLOps & Tracking

Weights & Biases, MLflow, DVC for experiment tracking. Model versioning, A/B testing, and performance monitoring.

Example AI-Generated Python Code

See how our AI agents build production LLM applications with RAG systems and autonomous agents:

1. Production RAG System with LangChain

# AI-Generated Production-Ready RAG System
# Retrieval-Augmented Generation with LangChain, Pinecone, and Claude
from langchain_anthropic import ChatAnthropic
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_pinecone import PineconeVectorStore
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain.docstore.document import Document
from typing import List, Dict, Optional, Any
from dataclasses import dataclass
import pinecone
import logging
import time

logger = logging.getLogger(__name__)

@dataclass
class RAGConfig:
    """Configuration for RAG system with production defaults."""
    pinecone_api_key: str
    pinecone_environment: str
    pinecone_index_name: str
    anthropic_api_key: str
    openai_api_key: str

    # Chunking parameters
    chunk_size: int = 1000
    chunk_overlap: int = 200

    # Retrieval parameters
    top_k: int = 4
    similarity_threshold: float = 0.7

    # LLM parameters
    model_name: str = "claude-3-5-sonnet-20250116"
    temperature: float = 0.0
    max_tokens: int = 2048


class ProductionRAGSystem:
    """
    Enterprise-grade RAG system with intelligent chunking,
    semantic search, and error handling.
    """

    def __init__(self, config: RAGConfig):
        self.config = config
        self.embeddings = None
        self.vectorstore = None
        self.llm = None
        self.qa_chain = None
        self._initialize_components()

    def _initialize_components(self) -> None:
        """Initialize all RAG components with error handling."""
        try:
            # Initialize embeddings
            logger.info("Initializing OpenAI embeddings...")
            self.embeddings = OpenAIEmbeddings(
                openai_api_key=self.config.openai_api_key,
                model="text-embedding-3-large"
            )

            # Initialize Pinecone
            logger.info("Connecting to Pinecone...")
            pinecone.init(
                api_key=self.config.pinecone_api_key,
                environment=self.config.pinecone_environment
            )

            # Initialize vector store
            self.vectorstore = PineconeVectorStore(
                index_name=self.config.pinecone_index_name,
                embedding=self.embeddings
            )

            # Initialize Claude LLM
            logger.info("Initializing Claude LLM...")
            self.llm = ChatAnthropic(
                anthropic_api_key=self.config.anthropic_api_key,
                model_name=self.config.model_name,
                temperature=self.config.temperature,
                max_tokens=self.config.max_tokens
            )

            logger.info("RAG system initialized successfully")

        except Exception as e:
            logger.error(f"Failed to initialize RAG components: {e}")
            raise

    def intelligent_chunking(self, text: str, metadata: Optional[Dict] = None) -> List[Document]:
        """
        Intelligent text chunking with semantic awareness.
        Preserves code blocks, paragraphs, and logical boundaries.
        """
        try:
            splitter = RecursiveCharacterTextSplitter(
                chunk_size=self.config.chunk_size,
                chunk_overlap=self.config.chunk_overlap,
                length_function=len,
                separators=[
                    "\n\n\n",  # Multiple newlines (section breaks)
                    "\n\n",    # Paragraph breaks
                    "\n",      # Line breaks
                    ". ",      # Sentence breaks
                    " ",       # Word breaks
                    ""         # Character breaks (fallback)
                ]
            )

            chunks = splitter.split_text(text)

            # Create documents with metadata
            documents = []
            for i, chunk in enumerate(chunks):
                doc_metadata = {
                    "chunk_index": i,
                    "total_chunks": len(chunks),
                    "char_count": len(chunk),
                    **(metadata or {})
                }
                documents.append(Document(page_content=chunk, metadata=doc_metadata))

            logger.info(f"Created {len(documents)} intelligent chunks from input text")
            return documents

        except Exception as e:
            logger.error(f"Chunking failed: {e}")
            raise

    def index_documents(self, documents: List[Document], batch_size: int = 100) -> Dict[str, Any]:
        """
        Index documents with batching and error recovery.
        """
        try:
            start_time = time.time()
            total_docs = len(documents)

            logger.info(f"Indexing {total_docs} documents in batches of {batch_size}...")

            # Process in batches
            for i in range(0, total_docs, batch_size):
                batch = documents[i:i + batch_size]
                batch_num = (i // batch_size) + 1
                total_batches = (total_docs + batch_size - 1) // batch_size

                try:
                    self.vectorstore.add_documents(batch)
                    logger.info(f"Indexed batch {batch_num}/{total_batches} ({len(batch)} docs)")

                except Exception as e:
                    logger.error(f"Failed to index batch {batch_num}: {e}")
                    # Continue with next batch instead of failing completely
                    continue

            elapsed_time = time.time() - start_time

            return {
                "total_documents": total_docs,
                "total_batches": total_batches,
                "elapsed_seconds": round(elapsed_time, 2),
                "docs_per_second": round(total_docs / elapsed_time, 2)
            }

        except Exception as e:
            logger.error(f"Document indexing failed: {e}")
            raise

    def create_qa_chain(self) -> None:
        """Create retrieval QA chain with custom prompt."""
        try:
            # Custom prompt template for better responses
            from langchain.prompts import PromptTemplate

            template = """Use the following pieces of context to answer the question at the end.
If you don't know the answer based on the context, say so - don't make up information.
Provide specific references to the context when possible.

Context:
{context}

Question: {question}

Answer (be concise and cite sources):"""

            prompt = PromptTemplate(
                template=template,
                input_variables=["context", "question"]
            )

            # Create retrieval QA chain
            self.qa_chain = RetrievalQA.from_chain_type(
                llm=self.llm,
                chain_type="stuff",
                retriever=self.vectorstore.as_retriever(
                    search_kwargs={
                        "k": self.config.top_k,
                        "score_threshold": self.config.similarity_threshold
                    }
                ),
                return_source_documents=True,
                chain_type_kwargs={"prompt": prompt}
            )

            logger.info("QA chain created successfully")

        except Exception as e:
            logger.error(f"Failed to create QA chain: {e}")
            raise

    def query(self, question: str) -> Dict[str, Any]:
        """
        Query the RAG system with comprehensive response metadata.
        """
        try:
            if not self.qa_chain:
                self.create_qa_chain()

            start_time = time.time()

            # Execute query
            result = self.qa_chain({"query": question})

            elapsed_time = time.time() - start_time

            # Extract source information
            sources = []
            for doc in result.get("source_documents", []):
                sources.append({
                    "content": doc.page_content[:200] + "...",  # First 200 chars
                    "metadata": doc.metadata,
                    "relevance_score": getattr(doc, "score", None)
                })

            return {
                "question": question,
                "answer": result["result"],
                "sources": sources,
                "source_count": len(sources),
                "elapsed_seconds": round(elapsed_time, 2)
            }

        except Exception as e:
            logger.error(f"Query failed: {e}")
            return {
                "question": question,
                "answer": f"Error: {str(e)}",
                "sources": [],
                "source_count": 0,
                "error": True
            }


# Example usage
if __name__ == "__main__":
    # Initialize RAG system
    config = RAGConfig(
        pinecone_api_key="your-pinecone-key",
        pinecone_environment="us-west1-gcp",
        pinecone_index_name="rag-demo",
        anthropic_api_key="your-anthropic-key",
        openai_api_key="your-openai-key"
    )

    rag = ProductionRAGSystem(config)

    # Index documents
    documents = rag.intelligent_chunking(
        text="Your large document text here...",
        metadata={"source": "documentation.pdf", "version": "1.0"}
    )

    stats = rag.index_documents(documents)
    print(f"Indexed {stats['total_documents']} documents in {stats['elapsed_seconds']}s")

    # Query the system
    response = rag.query("What are the key features of this system?")
    print(f"Answer: {response['answer']}")
    print(f"Sources: {response['source_count']} documents retrieved")

2. Autonomous AI Agent with Function Calling

# AI-Generated Autonomous Agent with Multi-Step Reasoning
# Uses Anthropic Claude with function calling and error recovery
import anthropic
import json
import logging
from typing import List, Dict, Any, Callable, Optional
from dataclasses import dataclass, field
from enum import Enum
import time

logger = logging.getLogger(__name__)


class AgentState(Enum):
    """Agent execution states."""
    IDLE = "idle"
    THINKING = "thinking"
    EXECUTING = "executing"
    ERROR = "error"
    COMPLETE = "complete"


@dataclass
class FunctionResult:
    """Result of a function execution."""
    success: bool
    data: Any
    error: Optional[str] = None
    execution_time: float = 0.0


@dataclass
class AgentConfig:
    """Configuration for autonomous agent."""
    anthropic_api_key: str
    model: str = "claude-3-5-sonnet-20250116"
    max_iterations: int = 10
    max_tokens: int = 4096
    temperature: float = 0.0
    timeout_seconds: int = 300


class AutonomousAgent:
    """
    Autonomous AI agent with function calling, multi-step reasoning,
    and comprehensive error handling.
    """

    def __init__(self, config: AgentConfig):
        self.config = config
        self.client = anthropic.Anthropic(api_key=config.anthropic_api_key)
        self.state = AgentState.IDLE
        self.tools: Dict[str, Callable] = {}
        self.tool_schemas: List[Dict] = []
        self.execution_history: List[Dict] = []

    def register_tool(self, name: str, function: Callable, schema: Dict) -> None:
        """
        Register a tool (function) that the agent can call.

        Args:
            name: Unique tool identifier
            function: Python function to execute
            schema: Anthropic tool schema (description, parameters)
        """
        self.tools[name] = function
        self.tool_schemas.append({
            "name": name,
            **schema
        })
        logger.info(f"Registered tool: {name}")

    def _execute_tool(self, tool_name: str, tool_input: Dict[str, Any]) -> FunctionResult:
        """
        Execute a registered tool with error handling and timing.
        """
        if tool_name not in self.tools:
            return FunctionResult(
                success=False,
                data=None,
                error=f"Tool '{tool_name}' not found"
            )

        try:
            start_time = time.time()
            result = self.tools[tool_name](**tool_input)
            elapsed = time.time() - start_time

            return FunctionResult(
                success=True,
                data=result,
                execution_time=round(elapsed, 3)
            )

        except Exception as e:
            logger.error(f"Tool execution failed for {tool_name}: {e}")
            return FunctionResult(
                success=False,
                data=None,
                error=str(e)
            )

    def run(self, task: str, context: Optional[Dict] = None) -> Dict[str, Any]:
        """
        Execute autonomous agent on a task with multi-step reasoning.

        Args:
            task: Natural language task description
            context: Optional context/background information

        Returns:
            Final result with execution metadata
        """
        self.state = AgentState.THINKING
        self.execution_history = []

        start_time = time.time()
        iteration_count = 0

        # Build initial messages
        messages = [
            {
                "role": "user",
                "content": self._build_task_prompt(task, context)
            }
        ]

        try:
            while iteration_count < self.config.max_iterations:
                iteration_count += 1
                elapsed = time.time() - start_time

                # Check timeout
                if elapsed > self.config.timeout_seconds:
                    raise TimeoutError(
                        f"Agent exceeded timeout of {self.config.timeout_seconds}s"
                    )

                logger.info(f"Iteration {iteration_count}: Agent thinking...")

                # Call Claude with tools
                response = self.client.messages.create(
                    model=self.config.model,
                    max_tokens=self.config.max_tokens,
                    temperature=self.config.temperature,
                    tools=self.tool_schemas,
                    messages=messages
                )

                # Log iteration
                self.execution_history.append({
                    "iteration": iteration_count,
                    "stop_reason": response.stop_reason,
                    "content": response.content
                })

                # Check if agent is done
                if response.stop_reason == "end_turn":
                    self.state = AgentState.COMPLETE

                    # Extract final answer
                    final_text = ""
                    for block in response.content:
                        if hasattr(block, "text"):
                            final_text += block.text

                    return {
                        "success": True,
                        "result": final_text,
                        "iterations": iteration_count,
                        "elapsed_seconds": round(time.time() - start_time, 2),
                        "tool_calls": len([h for h in self.execution_history
                                         if h["stop_reason"] == "tool_use"])
                    }

                # Execute tool calls if requested
                elif response.stop_reason == "tool_use":
                    self.state = AgentState.EXECUTING

                    # Add assistant response to messages
                    messages.append({
                        "role": "assistant",
                        "content": response.content
                    })

                    # Execute all tool calls
                    tool_results = []
                    for block in response.content:
                        if block.type == "tool_use":
                            logger.info(f"Executing tool: {block.name}")

                            result = self._execute_tool(block.name, block.input)

                            tool_results.append({
                                "type": "tool_result",
                                "tool_use_id": block.id,
                                "content": json.dumps({
                                    "success": result.success,
                                    "data": result.data,
                                    "error": result.error
                                })
                            })

                    # Add tool results to messages
                    messages.append({
                        "role": "user",
                        "content": tool_results
                    })

                    self.state = AgentState.THINKING

                else:
                    # Unexpected stop reason
                    raise ValueError(f"Unexpected stop_reason: {response.stop_reason}")

            # Max iterations reached
            self.state = AgentState.ERROR
            return {
                "success": False,
                "error": f"Agent reached max iterations ({self.config.max_iterations})",
                "iterations": iteration_count,
                "partial_history": self.execution_history
            }

        except Exception as e:
            self.state = AgentState.ERROR
            logger.error(f"Agent execution failed: {e}")
            return {
                "success": False,
                "error": str(e),
                "iterations": iteration_count,
                "elapsed_seconds": round(time.time() - start_time, 2)
            }

    def _build_task_prompt(self, task: str, context: Optional[Dict]) -> str:
        """Build comprehensive task prompt with context."""
        prompt = f"""You are an autonomous AI agent designed to complete tasks using available tools.

TASK: {task}"""

        if context:
            prompt += f"\n\nCONTEXT:\n{json.dumps(context, indent=2)}"

        prompt += """

INSTRUCTIONS:
1. Analyze the task and determine which tools you need to use
2. Execute tools in the correct sequence
3. Handle errors gracefully and retry if needed
4. Provide a clear final answer when complete

Available tools are defined in the tools parameter. Use them as needed."""

        return prompt


# Example: Register tools and run agent
if __name__ == "__main__":
    # Initialize agent
    config = AgentConfig(anthropic_api_key="your-api-key")
    agent = AutonomousAgent(config)

    # Register example tools
    def search_database(query: str, limit: int = 10) -> List[Dict]:
        """Search database for relevant documents."""
        # Simulated database search
        return [{"id": i, "title": f"Result {i}", "score": 0.9} for i in range(limit)]

    def analyze_sentiment(text: str) -> Dict[str, float]:
        """Analyze sentiment of text."""
        # Simulated sentiment analysis
        return {"positive": 0.7, "negative": 0.2, "neutral": 0.1}

    agent.register_tool(
        "search_database",
        search_database,
        {
            "description": "Search database for documents matching a query",
            "input_schema": {
                "type": "object",
                "properties": {
                    "query": {"type": "string", "description": "Search query"},
                    "limit": {"type": "integer", "description": "Max results"}
                },
                "required": ["query"]
            }
        }
    )

    agent.register_tool(
        "analyze_sentiment",
        analyze_sentiment,
        {
            "description": "Analyze sentiment of text (positive/negative/neutral)",
            "input_schema": {
                "type": "object",
                "properties": {
                    "text": {"type": "string", "description": "Text to analyze"}
                },
                "required": ["text"]
            }
        }
    )

    # Run agent on task
    result = agent.run(
        task="Find documents about 'AI safety' and analyze their sentiment",
        context={"priority": "high", "deadline": "2025-01-31"}
    )

    print(f"Success: {result['success']}")
    print(f"Result: {result.get('result', result.get('error'))}")
    print(f"Iterations: {result['iterations']}")

Python AI Development Features

LLM Integration & Prompt Engineering

  • Production-ready API clients for OpenAI, Anthropic, Cohere, Google Gemini
  • Streaming responses with error handling and retry logic
  • Function calling with type-safe schemas and validation
  • Prompt template management and optimization
  • Token counting, cost tracking, and rate limiting

GPU Optimization & Distributed Training

  • CUDA kernel optimization for PyTorch and TensorFlow
  • Mixed precision training (FP16/BF16) for memory efficiency
  • Multi-GPU distributed training with DeepSpeed and FSDP
  • Gradient accumulation and checkpointing strategies
  • Performance profiling and bottleneck identification

MLOps & Production Deployment

  • Model versioning with DVC and MLflow
  • Experiment tracking with Weights & Biases integration
  • A/B testing frameworks and performance monitoring
  • Containerization with Docker and Kubernetes orchestration
  • CI/CD pipelines for ML model deployment
  • Model serving with FastAPI, TorchServe, and TensorFlow Serving

Vector Database & Semantic Search

  • Embedding generation with OpenAI, Cohere, and sentence-transformers
  • Vector database integration (Pinecone, Weaviate, ChromaDB, FAISS)
  • Hybrid search combining semantic and keyword matching
  • Re-ranking strategies and relevance tuning
  • Batch processing and incremental indexing

Fine-tuning & Model Customization

  • Parameter-Efficient Fine-Tuning (PEFT) with LoRA and QLoRA
  • Supervised fine-tuning (SFT) for domain adaptation
  • RLHF (Reinforcement Learning from Human Feedback) workflows
  • Quantization (GPTQ, AWQ) for efficient deployment
  • Custom tokenizer training and vocabulary expansion

Real-World AI Development Results

LLM Application Development

  • Complete RAG systems in hours: Production-ready retrieval pipelines with intelligent chunking, vector search, and LLM integration
  • Autonomous agents in minutes: Multi-step reasoning frameworks with function calling and error recovery
  • API integration patterns: OpenAI, Anthropic, Cohere clients with streaming, retry logic, and cost tracking
  • Prompt engineering automation: Template management, few-shot learning, and dynamic prompt generation

Model Training & Optimization

  • Fine-tuning workflows: LoRA/QLoRA implementation with PEFT for domain-specific models
  • GPU optimization: Mixed precision training, distributed strategies, and memory-efficient implementations
  • Model deployment: FastAPI serving endpoints with async processing and batch inference
  • MLOps pipelines: Automated experiment tracking, model versioning, and A/B testing frameworks

Enterprise-Grade Quality

  • Production error handling: Comprehensive retry logic, fallback strategies, and graceful degradation
  • Type-safe implementations: Full type hints for LLM responses, tool schemas, and API contracts
  • Security best practices: API key management, rate limiting, and input validation
  • Performance monitoring: Token usage tracking, latency profiling, and cost optimization

AI Development Workflow Integration

Our autonomous Python agents seamlessly integrate into your existing AI development workflow, accelerating every stage from prototyping to production deployment.

1. Rapid Prototyping & Experimentation

  • Instant LLM integration: Generate production-ready API clients for OpenAI, Anthropic, or Cohere in seconds
  • Quick RAG prototypes: Build complete retrieval pipelines with chunking, embeddings, and vector search
  • Agent scaffolding: Create autonomous agent frameworks with tool registration and state management
  • Notebook-to-production: Transform Jupyter experiments into production-ready modules

2. Production Implementation

  • Error handling patterns: Comprehensive retry logic, exponential backoff, and circuit breakers
  • Async optimization: Parallel LLM calls, streaming responses, and batch processing
  • Cost management: Token counting, budget limits, and provider fallback strategies
  • Type safety: Full Pydantic models for LLM responses and tool schemas

3. Testing & Validation

  • LLM testing frameworks: Mock providers, response validation, and deterministic testing
  • Prompt regression tests: Track prompt performance across model versions
  • Agent simulation: Test multi-step reasoning with synthetic tool environments
  • Performance benchmarking: Latency, token usage, and accuracy metrics

4. Deployment & Monitoring

  • Containerization: Docker images with optimized dependencies and GPU support
  • API deployment: FastAPI endpoints with authentication, rate limiting, and auto-documentation
  • Observability: Structured logging, OpenTelemetry tracing, and custom metrics
  • Model monitoring: Track drift, performance degradation, and user feedback

Modern Python AI Stack We Support

Syntax.ai agents are trained on the latest Python AI ecosystem, generating code that leverages cutting-edge frameworks and best practices.

🔗

LLM Frameworks

LangChain • LlamaIndex
Semantic Kernel • Haystack

🤖

Model APIs

OpenAI • Anthropic
Cohere • Google Gemini

🧠

Deep Learning

PyTorch • TensorFlow
Hugging Face • JAX/Flax

🔍

Vector Databases

Pinecone • Weaviate
ChromaDB • FAISS

📊

MLOps

W&B • MLflow
DVC • Kubeflow

Optimization

DeepSpeed • FSDP
Accelerate • vLLM

What AI Developers Are Saying

"Syntax.ai built our entire RAG system in under 2 hours. Complete with intelligent chunking, Pinecone integration, and a FastAPI endpoint. The code quality is better than what our senior engineers write—full error handling, type hints, and async optimization out of the box."

— ML Engineering Lead, Fortune 500 Financial Services

Use Case: Customer support RAG system processing 50K documents

"We needed to fine-tune Llama 3 on our domain-specific data. Syntax.ai generated the complete LoRA training pipeline with DeepSpeed, W&B logging, and multi-GPU support. What would've taken our team 2 weeks took 4 hours."

— AI Research Scientist, Healthcare AI Startup

Use Case: Fine-tuning Llama 3 8B for medical documentation

"The autonomous agent framework it built handles complex multi-step workflows with function calling, error recovery, and state management. It's production-ready code with comprehensive logging and observability. This is the future of AI development."

— Senior AI Engineer, E-commerce Platform

Use Case: Autonomous customer service agent with CRM integration

Get Started with Production AI Development

Transform your AI development workflow with autonomous agents that understand LangChain, Hugging Face, and the entire Python AI ecosystem. From RAG systems to autonomous agents, our specialized Python AI agents accelerate development while maintaining production-grade code quality.

Ready to build production LLM applications? Start with syntax.ai and see how our autonomous Python agents can deliver enterprise-ready RAG systems, AI agents, and fine-tuned models in hours, not weeks.

Key Benefits for AI Developers:

  • 80% faster LLM integration: Production-ready OpenAI, Anthropic, and Cohere clients with streaming and error handling
  • Complete RAG systems: Intelligent chunking, vector database integration, and semantic search in minutes
  • Autonomous agent frameworks: Multi-step reasoning, function calling, and error recovery patterns
  • GPU-optimized training: Mixed precision, distributed training, and performance profiling
  • MLOps automation: Experiment tracking, model versioning, and deployment pipelines
← Back to Languages ← Back to syntax.ai